Abstract: Distributed computations, such as distributed matrix multiplication, can be vulnerable to significant security issues, notably Byzantine attacks. These attacks may target either worker nodes ...
Discovering faster algorithms for matrix multiplication remains a key pursuit in computer science and numerical linear algebra. Since the pioneering contributions of Strassen and Winograd in the late ...
Google DeepMind today pulled the curtain back on AlphaEvolve, an artificial-intelligence agent that can invent brand-new computer algorithms — then put them straight to work inside the company's vast ...
Abstract: While the Karatsuba algorithm reduces the complexity of large integer multiplication, the extra additions required minimize its benefits for smaller integers of more commonly-used bitwidths.
Discover how nvmath-python leverages NVIDIA CUDA-X math libraries for high-performance matrix operations, optimizing deep learning tasks with epilog fusion, as detailed by Szymon Karpiński.
Researchers claim to have developed a new way to run AI language models more efficiently by eliminating matrix multiplication from the process. This fundamentally redesigns neural network operations ...
Presenting an algorithm that solves linear systems with sparse coefficient matrices asymptotically faster than matrix multiplication for any ω > 2. Our algorithm can be viewed as an efficient, ...
Computer scientists have discovered a new way to multiply large matrices faster than ever before by eliminating a previously unknown inefficiency, reports Quanta Magazine. This could eventually ...
Computer scientists are a demanding bunch. For them, it’s not enough to get the right answer to a problem — the goal, almost always, is to get the answer as efficiently as possible. Take the act of ...
Python is convenient and flexible, yet notably slower than other languages for raw computational speed. The Python ecosystem has compensated with tools that make crunching numbers at scale in Python ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results