TPUs are Google’s specialized ASICs built exclusively for accelerating tensor-heavy matrix multiplication used in deep learning models. TPUs use vast parallelism and matrix multiply units (MXUs) to ...
Discovering faster algorithms for matrix multiplication remains a key pursuit in computer science and numerical linear algebra. Since the pioneering contributions of Strassen and Winograd in the late ...
Discover how nvmath-python leverages NVIDIA CUDA-X math libraries for high-performance matrix operations, optimizing deep learning tasks with epilog fusion, as detailed by Szymon Karpiński.
A new technical paper titled “Scalable MatMul-free Language Modeling” was published by UC Santa Cruz, Soochow University, UC Davis, and LuxiTech. “Matrix multiplication (MatMul) typically dominates ...
A team of software engineers at the University of California, working with one colleague from Soochow University and another from LuxiTec, has developed a way to run AI language models without using ...
Researchers claim to have developed a new way to run AI language models more efficiently by eliminating matrix multiplication from the process. This fundamentally redesigns neural network operations ...